Titorenko Lab Website
  • Home
  • Current Lab Members
  • Past Lab Members
  • Research Projects
  • Publications
  • Invited Presentations
  • Media Impact
  • Students' Awards
  • Students' Talks at Meetings
  • Home
  • Current Lab Members
  • Past Lab Members
  • Research Projects
  • Publications
  • Invited Presentations
  • Media Impact
  • Students' Awards
  • Students' Talks at Meetings
Search

Publications

2021
Mohammad, K. and Titorenko, V.I. Caloric restriction creates a metabolic pattern of chronological aging delay that in budding yeast differs from the metabolic design established by two other geroprotectors. Oncotarget (2021) 12: in press.

Klionsky, D. J. et al. (including Titorenko, V.I.). Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy (2021) 17: 1-382.​


Mohammad, K., Jiang, H. and Titorenko, V.I. Quantitative metabolomics of Saccharomyces cerevisiae using liquid chromatography coupled with tandem mass spectrometry. J. Vis. Exp. (2020) 167: 62061. 

2020
Mohammad, K., Baratang Junio, J.A., Tafakori, T., Orfanos, E. and Titorenko, V.I. Mechanisms that link chronological aging to cellular quiescence in budding yeast. Int. J. Mol. Sci. (2020) 21: 4717.

Dakik, P., Lozano Rodriguez, M.E., Baratang Junio, J.A., Mitrofanova, D., Medkour, Y., Tafakori, T., Taifour, T., Lutchman, V., Samson, E., Arlia-Ciommo, A., Rukundo, B., Simard, É. and Titorenko, V.I. Discovery of fifteen new geroprotective plant extracts and identification of cellular processes they affect to prolong the chronological lifespan of budding yeast. Oncotarget (2020) 11:2182-2203.

Mohamed, B., Mazeaud, C., Baril, M., Poirier, D., Sow, A. A., Chatel-Chaix, L., Titorenko, V.I. and Lamarre, D. Very-long-chain fatty acid metabolic capacity of 17-beta-hydroxysteroid dehydrogenase type 12 (HSD17B12) promotes replication of hepatitis C virus and related flaviviruses. Scientific Reports (2020) 10:4040.

Mohammad, K., Jiang, H., Hossain, M.I. and Titorenko, V.I. Quantitative analysis of the cellular lipidome of the yeast Saccharomyces cerevisiae using liquid chromatography coupled with tandem mass spectrometry. J. Vis. Exp. (2020) 157: 60616.

2019
Medkour, Y., Mohammad, K., Arlia-Ciommo, A., Svistkova, V., Dakik, P., Mitrofanova, D., Lozano Rodriguez, M.E., Baratang Junio, J.A., Taifour, T., Escudero, P., Goltsios, F.F., Soodbakhsh, S., Maalaoui, H., Simard, E. and Titorenko, V.I. Mechanisms by which PE21, an extract from the white willow Salix alba, delays chronological aging in budding yeast. Oncotarget (2019) 10:5780-5816.

Titorenko, V.I. (editor). Aging and Age-Related Disorders: From Molecular Mechanisms to Therapies. MDPI Special Issue E-book, Basel, Switzerland, 309 pages (2019).

Titorenko, V.I. Aging and age-related disorders: From molecular mechanisms to therapies. Int. J. Mol. Sci. (2019) 20: E3280.

Mohammad, K., Dakik, P., Medkour, Y., Mitrofanova, D. and Titorenko, V.I. Quiescence entry, maintenance and exit in adult stem cells. Int. J. Mol. Sci. (2019) 20: E2158.

Dakik, P., Medkour, Y., Karamat Mohammad, K. and Titorenko, V.I. Mechanisms through which some mitochondria-generated metabolites act as second messengers that are essential contributors to the aging process in eukaryotes across phyla. Front. Physiol. (2019) 10:461.

Dakik, P., McAuley, M., Chancharoen, M., Mitrofanova, D., Monica Enith Lozano Rodriguez, M.E., Baratang Junio, J.A., Lutchman, V., Cortes, B., Simard, E., and Titorenko, V.I. Pairwise combinations of chemical compounds that delay yeast chronological aging through different signaling pathways display synergistic effects on the extent of aging delay. Oncotarget (2019) 10:313-338.

2018
Arlia-Ciommo, A., Leonov, A., Mohammad, K., Beach, A., Richard, V.R., Bourque, S.D., Burstein, M.T., Goldberg, A.A., Kyryakov, P., Gomez-Perez, A., Koupaki, O. and Titorenko, V.I. Mechanisms through which lithocholic acid delays yeast chronological aging under caloric restriction conditions. Oncotarget (2018) 9:34945-34071.

Titorenko, V.I. Molecular and cellular mechanisms of aging and age-related disorders. Int. J. Mol. Sci. (2018) 19:E2049.

Mohammad, K. and Titorenko, V.I. Yeast chronological aging is linked to cell cycle regulation. Cell Cycle (2018) 17:1035-1036.

Mohammad, K., Dakik, P., Medkour, Y., McAuley, M., Mitrofanova, D. and Titorenko, V.I. Some metabolites act as second messengers in yeast chronological aging. Int. J. Mol. Sci. (2018) 19:E860.

Arlia-Ciommo, A., Leonov, A., Beach, A., Richard, V.R., Bourque, S.D., Burstein, M.T., Kyryakov, P., Gomez-Perez, A., Koupaki, O., Feldman, R. and Titorenko, V.I. Caloric restriction delays yeast chronological aging by remodeling carbohydrate and lipid metabolism, altering peroxisomal and mitochondrial functionalities, and postponing the onsets of apoptotic and liponecrotic modes of regulated cell death. Oncotarget (2018) 9:16163-16184.

Mohammad, K., Dakik, P., Medkour, Y., McAuley, M., Mitrofanova, D. and Titorenko, V.I. Yeast cells exposed to exogenous palmitoleic acid either adapt to stress and survive or commit to regulated liponecrosis and die. Oxid. Med. Cell. Longev. (2018) 2018:3074769.

Titorenko, V.I. Book review on ″Anti-aging Drugs: From Basic Research to Clinical Practice″. ChemMedChem (2018) 13:120-121.


Carmona-Gutierrez, D. et al. (including Titorenko, V.I.). Guidelines and recommendations on yeast cell death nomenclature. Microbial Cell (2018) 5:4-31.

Mitrofanova, D., Dakik, P., McAuley, M., Medkour, Y., Mohammad, K. and Titorenko, V.I. Lipid metabolism and transport define longevity of the yeast Saccharomyces cerevisiae. Front. Biosci. (2018) 23:1166-1194.

2017
Draz, H., Goldberg, A.A., Titorenko, V.I., Guns, E., Safe, S.H. and Sanderson, J.T. Diindolylmethane and its halogenated derivatives induce protective autophagy in human prostate cancer cells via induction of the oncogenic protein AEG-1 and activation of AMP-dependent kinase (AMPK). Cellular Signalling (2017) 40:172-182.

​Leonov, A., Feldman, R., Piano, A., Arlia-Ciommo, A., Lutchman, V., Ahmadi, M., Elsaser, S., Fakim, H., Heshmati-Moghaddam, M., Hussain, A., Orfali, S., Rajen, H., Roofigari-Esfahani, N., Rosanelli, L. and Titorenko, V.I. Caloric restriction extends yeast chronological lifespan via a mechanism linking cellular aging to cell cycle regulation, maintenance of a quiescent state, entry into a non-quiescent state and survival in the non-quiescent state. Oncotarget (2017) 8:69328-69350.

Medkour, Y., Dakik, P., McAuley, M., Mohammad, K., Mitrofanova, D. and Titorenko, V.I. Mechanisms underlying the essential role of mitochondrial membrane lipids in yeast chronological aging. Oxid. Med. Cell. Longev. (2017) 2017:2916985.

Iouk, T. and Titorenko, V.I. A laboratory test of evolutionary aging theories. Aging (2017) 9:600-601.

Leonov, A., Arlia-Ciommo, A., Bourque, S.D., Koupaki, O., Kyryakov, P., Dakik, P., McAuley, M., Medkour, Y., Mohammad, K., Di Maulo, T., Titorenko, V.I. Specific changes in mitochondrial lipidome alter mitochondrial proteome and increase the geroprotective efficiency of lithocholic acid in chronologically aging yeast. Oncotarget (2017) 8:30672-30691.

2016
Gomez-Perez, A., Kyryakov, P., Burstein, M.T., Asbah, N., Noohi, F., Iouk, T. and Titorenko, V.I. Empirical validation of a hypothesis of the hormetic selective forces driving the evolution of longevity regulation mechanisms. Front. Genet. (2016) 7:216.

Gafar, A.A., Draz, H.M., Goldberg, A.A., Bashandy, M.A., Bakry, S., Khalifa, M.A., AbuShair, W., Titorenko, V.I., Sanderson, J.T. Lithocholic acid induces endoplasmic reticulum stress, autophagy and mitochondrial dysfunction in human prostate cancer cells. PeerJ (2016) 4:e2445.

Kyryakov, P., Gomez-Perez, A., Glebov, A., Asbah, N., Bruno, L., Meunier, C., Iouk, T. and Titorenko, V.I. Empirical verification of evolutionary theories of aging. Aging (2016) 8:2568-2589.

Arlia-Ciommo, A., Dakik, P., Leonov, A., McAuley, M., Medkour, Y., Mohammad, K., Iouk, T., Simard, É. and Titorenko, V.I. Mechanisms through which chemical compounds produced by mammals or plants delay chronological aging in yeast. Austin Biol. (2016) 1:1011.

Dakik, P. and Titorenko, V.I. Communications between mitochondria, the nucleus, vacuoles, peroxisomes, the endoplasmic reticulum, the plasma membrane, lipid droplets and the cytosol during yeast chronological aging. Front. Genet. (2016) 7:177.

Lutchman, V., Dakik, P., McAuley, M., Cortes, B., Ferraye, G., Gontmacher, L., Graziano, D., Moukhariq, F., Simard, É. and Titorenko, V.I. Six plant extracts delay yeast chronological aging through different signaling pathways. Oncotarget (2016) 7:50845-50863.

Tremblay, M., Zhang, I., Bisht, K., Savage, J., Lecours, C., Parent, M., Titorenko, V.I. and Maysinger, D. Remodeling of lipid bodies by docosahexaenoic acid in activated microglial cells.J. Neuroinflammation (2016) 13:116.

Lutchman, V., Medkour, Y., Samson, E., Arlia-Ciommo, A., Dakik, P., Cortes, B., Feldman, R., Mohtashami, S., McAuley, M., Chancharoen, M., Rukundo, B., Simard, E. and Titorenko, V.I. Discovery of plant extracts that greatly delay yeast chronological aging and have different effects on longevity-defining cellular processes. Oncotarget (2016) 7:16542-16566.

Medkour, Y. and Titorenko, V.I. Mitochondria operate as signaling platforms in yeast aging. Aging(2016) 8:212-213.

Arlia-Ciommo, A., Svistkova, V., Mohtashami, S. and Titorenko, V.I. A novel approach to the discovery of anti-tumor pharmaceuticals: searching for activators of liponecrosis. Oncotarget(2016) 7:5204-5225.

Klionsky, D.J. et al. (including Titorenko, V.I.). Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy (2016) 12:1-222.

Medkour, Y., Svistkova, V. and Titorenko, V.I. Cell-non-autonomous mechanisms underlying cellular and organismal aging. Int. Rev. Cell Mol. Biol. (2016) 321:259-297.

2015
Shebani, S., Jones, N., Eid, R., Gharib, N., Arab, N., Titorenko, V.I., Vali, H., Young, P. and Greenwood, M. Inhibition of stress mediated cell death by human Lactate Dehydrogenase B(LDHB) in yeast. FEMS Yeast Res. (2015) 15:fov032.

Beach, A., Leonov, A., Arlia-Ciommo, A., Svistkova, V., Lutchman, V. and Titorenko, V.I. Mechanisms by which different functional states of mitochondria define yeast longevity. Int. J. Mol. Sci. (2015) 16:5528-5554.

Beach, A., Richard, V.R., Bourque, S., Boukh-Viner, T., Kyryakov, P., Gomez-Perez, A., Arlia-Ciommo, A., Feldman, R., Leonov, A., Piano, A., Svistkova, V. and Titorenko, V.I. Lithocholic bile acidaccumulated in yeast mitochondria orchestrates a development of an anti-agingcellular pattern by causing age-related changes in cellular proteome. Cell Cycle (2015) 14:1643-1656.

Leonov, A., Arlia-Ciommo, A., Piano, A., Svistkova, V., Lutchman, V., Medkour, Y. and Titorenko, V.I. Longevity extension by phytochemicals. Molecules (2015) 20:6544-6572.

Titorenko, V.I. and Rachubinski, R.A. (editors). Origin and spatiotemporal dynamics of the peroxisomal endomembrane system. Frontiers Research Topic E-book. FrontiersMedia SA, Switzerland, 148 pages (2015).

Piano, A. and Titorenko, V.I. The intricate interplay between mechanisms underlying aging and cancer. Aging and Disease (2015) 6:56-75.

2014
Titorenko, V.I. and Rachubinski, RA. Origin and spatiotemporal dynamics of the peroxisomal endomembrane system. Front. Physiol. (2014) 5:493. 

Arlia-Ciommo, A., Piano,A., Svistkova, V., Mohtashami, S. and Titorenko, V.I. Mechanisms underlying the anti-aging and anti-tumor effects of lithocholic bile acid. Int. J. Mol. Sci. (2014) 15:16522-16543. 

Richard, V.R., Bourque, S.D. and Titorenko, V.I. Metabolomic and lipidomic analyses of chronologically aging yeast. In: Yeast Genetics. Methods and Protocols. Eds. Smith, J.S. and Burke, D.J. Humana Press, USA, pp. 359-373 (2014).

Arlia-Ciommo, A., Piano, A., Leonov, A., Svistkova, V. and Titorenko, V.I. Quasi-programmed aging of budding yeast: a trade-off between programmed processes of cell proliferation, differentiation, stress response, survival and death defines yeast lifespan. Cell Cycle (2014) 13:3336-3349.

Richard, V.R., Beach, A., Piano, A., Leonov, A., Feldman, R., Burstein, M.T., Kyryakov, P., Gomez-Perez, A., Arlia-Ciommo, A., Baptista, S., Campbell, C., Goncharov, D., Pannu, S., Patrinos, D., Sadri, B., Svistkova, V., Victor, A. and Titorenko, V.I. Mechanism of liponecrosis, a distinct mode of programmed cell death. Cell Cycle (2014) 13:3707-3726.

Richard, V.R., Bourque,S.D. and Titorenko, V.I. Metabolomic and lipidomic analyses of chronologicallyaging yeast. Methods Mol. Biol. (2014) 1205:359-373.

Arlia-Ciommo, A., Leonov, A., Piano, A., Svistkova, V. and Titorenko, V.I. Cell-autonomous mechanisms of chronological aging in the yeast Saccharomyces cerevisiae. Microbial Cell(2014) 1:164-178.

Burstein, M.T. and Titorenko,V.I. A mitochondrially targeted compound delays aging in yeast through a mechanism linking mitochondrial membrane lipid metabolism to mitochondrial redox biology. Redox Biol. (2014) 2:305-307.

Martins, D., Titorenko, V.I. and English, A.M. Cells with impaired mitochondrial H2O2 sensing generate less •OH radicals and live longer. Antioxid. Redox. Signal. (2014) 21:1490-1503.

Sheibani, S., Richard, V.R., Beach, A., Leonov, A., Feldman, R., Mattie, S., Khelghatybana, L., Piano, A., Greenwood, M., Vali, H. and Titorenko, V.I. Macromitophagy, neutral lipids synthesis, and peroxisomal fatty acid oxidation protect yeast from “liponecrosis”, a previously unknown form of programmed cell death. Cell Cycle (2014) 13:138-147.

Goldberg, A.A., Titorenko, V.I., Beach, A., Abdelbaqi, K., Safe, S. and Sanderson, J.T. Ring- substituted analogs of 3,3'-diindolylmethane (DIM) induce apoptosis and necrosis in androgen-dependent and -independent prostate cancer cells. Invest. New Drugs (2014) 32:25-36.

2013
Goldberg, A.A., Beach, A., Titorenko, V.I. and Sanderson, J.T. Bile acids induce apoptosis selectively in androgen-dependent and -independent prostate cancer cells. PeerJ (2013) 1:e122.

Beach, A., Richard, V.R., Leonov, A., Burstein, M.T., Bourque, S.D., Koupaki, O., Juneau, M., Feldman, R., Iouk, T. and Titorenko, V.I. Mitochondrial membrane lipidome defines yeast longevity. Aging (2013) 5:551-574.

Leonov, A. and Titorenko, V.I. A network of interorganellar communications underlies cellular aging. IUBMB Life (2013) 65:665-674.

Beach, A. and Titorenko, V.I. Essential roles of peroxisomally produced and metabolized biomolecules in regulating yeast longevity. Subcell. Biochem. (2013) 69:153-167.

Beach, A. and Titorenko, V.I. Essential Roles of Peroxisomally Produced and Metabolized Biomolecules in Regulating Yeast Longevity. In: Peroxisomes and their Key Role in Cellular Signaling and Metabolism. Ed. del Rio, L.A. Springer Science+BusinessMedia Dordrecht, Germany, pp. 153-167 (2013).

Richard, V.R., Leonov, A., Beach, A., Burstein, M.T., Koupaki, O., Gomez-Perez, A., Levy, S., Pluska, L., Mattie, S., Rafeh, R., Iouk, T., Sheibani, S., Greenwood, M., Vali, H. and Titorenko, V.I. Macromitophagy is a longevity assurance process that in chronologically aging yeast limited in calorie supply sustains functional mitochondria and maintains cellular lipid homeostasis.Aging (2013) 5:1-36. 

Filyak, Y., Finiuk, N., Mitina, N., Bilyk,O., Titorenko, V.I., Hrydzhuk, O., Zaichenko, A. and Stoika, R. Novel method for genetic transformation of yeast cells: using of oligoelectrolyte polymeric nanoscale carrier of DNA and application of improved techniques. BioTechniques(2013) 54:35-43.

Beach,A., Burstein, M.T., Richard, V.R., Gomez-Perez, A., Leonov, A., Iouk, T. and Titorenko, V.I. A modular network regulates longevity of chronologically aging yeast. Cell Biol. Res. Ther. (2013) 2:1000e110.

Titorenko, V.I.and Harkness, T.A.A. (Eds.). The spatiotemporal dynamics of longevity-defining cellular processes and its modulation by genetic, dietary and pharmacological anti-aging interventions. Frontiers Research Topic E-book. Frontiers Media SA, Switzerland, 101 pages (2013).

2012
Titorenko, V.I. and Harkness, T.A.A. The spatiotemporal dynamics of longevity-defining cellular processes and its modulation by genetic, dietary and pharmacological anti-aging interventions.Front. Physiol. (2012) 3:419.

Burstein, M.T., Kyryakov, P., Beach, A., Richard, V.R., Koupaki, O., Gomez-Perez, A., Leonov, A., Levy, S., Noohi, F. and Titorenko, V.I. Lithocholic acid extends longevity of chronologically aging yeast only if added at certain critical periods of their lifespan. Cell Cycle (2012) 11:3443-3462.

Beach, A., Burstein, M.T., Richard, V.R., Leonov, A., Levy, S. and Titorenko, V.I.  Integration of peroxisomes into an endomembrane system that governs cellular aging. Front. Physiol. (2012)3:283.

Kyryakov, P., Beach, A., Richard, V.R., Burstein, M.T., Leonov, A., Levy, S. and Titorenko, V.I. Caloric restriction extends yeast chronological lifespan by altering a pattern of age-related changes in trehalose concentration. Front. Physiol. (2012) 3:256.

Burstein, M.T., Beach, A., Richard, V.R., Koupaki, O., Gomez-Perez, A., Goldberg, A.A., Kyryakov, P., Bourque, S.D., Glebov, A. and Titorenko, V.I. Interspecies chemical signalsreleased into the environment may create xenohormetic, hormetic and cytostatic selectiveforces that drive the ecosystemic evolution of longevity regulation mechanisms. Dose-Response(2012) 10:75-82.

Khatchadourian, A., Bourque, S.D., Richard, V.R., Titorenko, V.I. and Maysinger, D. Dynamics and regulation of lipid droplet formation in lipopolysaccharide (LPS)-stimulated microglia.Biochem. Biophys. Acta (2012) 1821:607-617.

2011
Goldberg, A.A., Beach, A., Davies, G.F., Harkness, T.A.A., LeBlanc, A. and Titorenko, V.I. Lithocholic bile acid selectively kills neuroblastoma cells, while sparing normal neuronal cells.Oncotarget (2011) 2:761-782.

Beach, A. and Titorenko, V.I. In search of housekeeping pathways that regulate longevity. CellCycle (2011) 10:3042-3044.

Titorenko, V.I. and Terlecky, S.R. Peroxisome metabolism and cellular aging. Traffic (2011)12:252-259. 

2010
Goldberg, A.A., Kyryakov, P., Bourque, S.D. and Titorenko, V.I. Xenohormetic, hormetic and cytostatic selective forces driving longevity at the ecosystemic level. Aging (2010) 2:361-370.
 
Goldberg, A.A., Richard, V.R., Kyryakov, P., Bourque, S.D., Beach, A., Burstein, M.T., Glebov, A., Koupaki, O., Boukh-Viner, T., Gregg, C., Juneau, M., English, A.M., Thomas, D.Y. and Titorenko, V.I. Chemical genetic screen identifies lithocholic acid as an anti-aging compound that extends yeast chronological life span in a TOR-independent manner, by modulating housekeeping longevity assurance processes. Aging (2010) 2:393-414.
 
2009
Goldberg, A.A., Bourque, S.D., Kyryakov, P., Gregg, C., Boukh-Viner, T.,  Beach, A., Burstein, M.T., Machkalyan, G., Richard, V., Rampersad, S., Cyr, D., Milijevic, S. and Titorenko, V.I. Effect of calorie restriction on the metabolic history of chronologically aging yeast. Exp. Gerontol.(2009) 44:555-571.
 
Bourque, S.D. and Titorenko, V.I. A quantitative assessment of the yeast lipidome using electrospray ionization mass spectrometry. J. Vis. Exp. (2009) 30:1-3, doi: 10.3791/1513.
 
Gregg, C., Kyryakov, P. and Titorenko, V.I. Purification of mitochondria from yeast cells. J. Vis. Exp. (2009) 30:1-2, doi: 10.3791/1417.
 
Goldberg, A.A., Bourque, S.D., Kyryakov, P., Boukh-Viner, T., Gregg, C., Beach, A., Burstein, M.T., Machkalyan, G., Richard, V., Rampersad, S. and Titorenko, V.I. A novel function of lipid droplets in regulating longevity. Biochem. Soc. Trans. (2009) 37:1050-1055. 
 
Titorenko, V.I. and Rachubinski, R.A. Spatiotemporal dynamics of the ER-derived peroxisomal endomembrane system. Int. Rev. Cell Mol. Biol. (2009) 272:191-244.
 
Terlecky, S.R.  and Titorenko, V.I. (editors). Book "Emergent Functions of the Peroxisome". Research Signpost, Kerala, India, 135 pages (2009).
 
Goldberg, A. and Titorenko, V.I. Peroxisomes and dimorphic transition in the yeast Yarrowia lipolytica. In: Emergent Functions of the Peroxisome. Eds. Terlecky, S.R. and Titorenko, V.I. Research Signpost, Kerala, India, pp. 87-96 (2009).
 
Terlecky, S.R. and Titorenko, V.I. New roles for the peroxisome in cell development, differentiation, morphogenesis, and agung. In: Emergent Functions of the Peroxisome.Eds. Terlecky, S.R. and Titorenko, V.I. Research Signpost, Kerala, India, pp. 1-5 (2009).

2007
Guo, T., Gregg, C., Boukh-Viner, T., Kyryakov, P., Goldberg, A., Bourque, S., Banu, F., Haile, S., Milijevic, S., Hung Yeung San, K., Solomon, J., Wong, V. and Titorenko, V.I. A signal from inside the peroxisome initiates its division by promoting the remodeling of the peroxisomal membrane. J. Cell Biol. (2007) 177:289-303.
 
The above article was an Editors' Choice article in Science (2007) 316:801. 
 
Kiel, J.A.K.W., Titorenko, V.I., van der Klei, I.J. and Veenhuis, M. Overproduction of translation elongation factor 1-alpha (eEF1A) suppresses the peroxisome biogenesis defect in a Hansenula polymorpha pex3 mutant via translational read-through. FEMS Yeast Res. (2007) 7:1114-1125.
 
2006 
Titorenko, V.I. and Mullen, R.T. Peroxisome biogenesis: the peroxisomal endomembrane system and the role of the ER. J. Cell Biol. (2006) 174:11-17.
 
The above review article was highlighted and recommended for reading in cell biology textbooks, the 7th edition of "The World of the Cell" by W.M. Becker, L.J. Kleinsmith, J. Hardin and G.P. Bertoni (Pearson/Benjamin Cummings, San Francisco, CA) published in 2008 and the 8th edition of "The World of the Cell" by J. Hardin, G.P. Bertoni and L.J. Kleinsmith (Pearson/Benjamin Cummings, San Francisco, CA) published in 2011. 

Boukh-Viner, T. and Titorenko, V.I. Lipids and lipid domains in the peroxisomal membrane of the yeast Yarrowia lipolytica. Biochem. Biophys. Acta (2006) 1763:1688-1696.
  
2005
Boukh-Viner, T., Guo, T., Alexandrian, A., Cerracchio, A., Gregg, C., Haile, S., Kyskan, R., Milijevic, S., Oren, D., Solomon, J., Wong, V., Nicaud, J.-M., Rachubinski, R.A., English, A.M. and Titorenko, V.I. Dynamic ergosterol- and ceramide-rich domains in the peroxisomal membrane serve as an organizing platform for peroxisome fusion. J. Cell Biol. (2005) 168:761-773.
 
2004
Titorenko, V.I. and Rachubinski, R.A. The peroxisome: orchestrating important developmental decisions from inside the cell. J. Cell Biol. (2004) 164:641-645.
 
Petriv, O.I., Tang, L., Titorenko, V.I. and Rachubinski, R.A. A new definition for the consensus sequence of the peroxisome targeting signal type 2. J. Mol. Biol. (2004) 341:119-134.
 
 
2003
Guo, T., Kit, Y.Y., Nicaud, J.-M., Le Dall, M.-T., Sears, S.K., Vali, H., Chan, H., Rachubinski, R.A.and Titorenko, V.I. Peroxisome division is regulated by a signal from inside the peroxisome. J. Cell Biol. (2003) 162:1255-1266.
 
Barth, G., Beckerich, J.-M., Dominguez, A., Kerscher, S., Ogrydziak, D., Titorenko, V.I. and Gaillardin, C. Functional genetics of Yarrowia lipolytica. In: Functional Genetics of Industrial Yeasts. Series: Topics in Current Genetics, Vol. 2, ed. J.H. de Winde. Springer-Verlag Heidelberg, Germany, pp. 227-272 (2003).
 
2002
Titorenko, V.I., Nicaud, J.-M., Wang, H., Chan, H. and Rachubinski, R.A. Acyl-CoA oxidase is imported as a heteropentameric, cofactor-containing complex into peroxisomes of Yarrowia lipolytica. J. Cell Biol. (2002) 156:481-494.
 
Petriv, O.I., Pilgrim, D.B., Rachubinski, R.A. and Titorenko, V.I. RNA interference of peroxisome-related genes in C. elegans: a new model for human peroxisomal disorders.Physiol. Genomics (2002) 10:79-91.
 
2001
Titorenko, V.I. and Rachubinski, R.A. Dynamics of peroxisome assembly and function. Trends Cell Biol. (2001) 11:22-29.
 
Titorenko, V.I. and Rachubinski, R.A. The life cycle of the peroxisome. Nature Rev. Mol. Cell Biol. (2001) 2:357-368.
 
The above review article was highlighted and recommended for reading in a cell biology textbook, the 4th edition of "The Cell: A Molecular Approach" by G.M. Cooper and R.E. Hausman (Sinauer Associates, Inc., Sunderland, MA) published in 2007.
 
2000
Brown, T.W., Titorenko, V.I. and Rachubinski, R.A. Mutants of the Yarrowia lipolytica PEX23gene encoding an integral peroxisomal membrane peroxin mislocalize matrix proteins and accumulate vesicles containing peroxisomal matrix and membrane proteins. Mol. Biol. Cell(2000) 11:141-152.
 
Titorenko, V.I., Chan, H. and Rachubinski, R.A. Fusion of small peroxisomal vesicles in vitro reconstructs an early step in the in vivo multistep peroxisome assembly pathway of Yarrowia lipolytica. J. Cell Biol. (2000) 148:29-43.
 
The above article was an Editors' Choice article in Science (2000) 287:549.
 
Titorenko, V.I. and Rachubinski, R.A. Peroxisomal membrane fusion requires two AAA family ATPases, Pex1p and Pex6p. J. Cell Biol. (2000) 150:881-886.
 
Titorenko, V.I., Smith, J.J., Szilard, R.K. and Rachubinski, R.A. Peroxisome biogenesis in the yeast Yarrowia lipolytica. Cell Biochem. Biophys. (2000) 32:21-26.
 
1999
Kiel, J.A.K.W., Rechinger, K.B., van der Klei, I.J., Salomons, F.A., Titorenko, V.I. and Veenhuis, M. The Hansenula polymorpha PDD1 gene product, essential for the selective degradation of peroxisomes, is a homologue of Saccharomyces cerevisiae Vps34p. Yeast (1999) 15:741-754.
 
1998
Titorenko, V.I. and Rachubinski, R.A. Mutants of the yeast Yarrowia lipolytica defective in protein exit from the endoplasmic reticulum are also defective in peroxisome biogenesis. Mol. Cell. Biol. (1998) 18:2789-2803.
 
The above article was selected by the American Society for Microbiology (ASM) as an article of the year published in ASM Journals.
 
Titorenko, V.I. and Rachubinski, R.A. The endoplasmic reticulum plays an essential role in peroxisome biogenesis. Trends Biochem. Sci. (1998) 23:231-233.
 
The above review article was highlighted and recommended for reading in the cell biology texbook "Cells" by B. Lewin, L. Cassimeris, V.R. Lingappa and G. Plopper (Jones and Barlett Publishers, Inc., Sudbury, MA) published in 2007.
 
Titorenko, V.I., Smith, J.J., Szilard, R.K. and Rachubinski, R.A. Pex20p of the yeast Yarrowia lipolytica is required for the oligomerization of thiolase in the cytosol and for its targeting to the peroxisome. J. Cell Biol. (1998) 142:403-420.
 
1997
Titorenko, V.I., Ogrydziak, D.M. and Rachubinski, R.A. Four distinct secretory pathways serve protein secretion, cell surface growth, and peroxisome biogenesis in the yeast Yarrowia lipolytica. Mol. Cell. Biol. (1997) 17:5210-5226.
 
1996
Gruzman, M.B., Titorenko, V.I., Ashin, V.V., Lusta, K.A. and Trotsenko, Y.A. Multiple molecular forms of alcohol oxidase from the methylotrophic yeast Pichia methanolica. Biochemistry (Moscow) (1996) 61:1537-1544.
 
Titorenko, V.I., Evers, M.E., Diesel, A., Samyn, B., van Beeumen, J., Roggenkamp, R., Kiel, J.A.K.W., van der Klei, I.J. and Veenhuis, M. Identification and characterization of cytosolic Hansenula polymorpha proteins belonging to the HSP70 protein family. Yeast (1996) 12:849-857.
 
Eitzen, G.A., Titorenko, V.I., Smith, J.J., Veenhuis, M., Szilard, R.K. and Rachubinski, R.A. The Yarrowia lipolytica gene PAY5 encodes a peroxisomal integral membrane protein homologous to the mammalian peroxisome assembly factor PAF-1. J. Biol. Chem. (1996) 271:20300-20306.
 
Titorenko, V.I., Eitzen, G.A. and Rachubinski, R.A. Mutations in the PAY5 gene of the yeast Yarrowia lipolytica cause the accumulation of multiple subpopulations of peroxisomes. J. Biol. Chem. (1996) 271:20307-20314.
 
Evers, M.E., Titorenko, V.I., Harder, W., van der Klei, I.J. and Veenhuis, M. Flavine adenine dinucleotide binding is the crucial step in alcohol oxidase assembly in the yeast Hansenula polymorpha. Yeast (1996) 12:917-923.

 
1995
Titorenko, V.I., Keizer, I., Harder, W. and Veenhuis, M. Isolation and characterization of mutants impaired in the selective degradation of peroxisomes in the yeast Hansenula polymorpha. J. Bacteriol. (1995) 177:357-363.
 
van der Klei, I.J., Hillbrands, R.E., Swaving, G.J., Waterham, H.R., Vrieling, E.G., Titorenko, V.I., Cregg, J.M., Harder, W. and Veenhuis, M. The Hansenula polymorpha PER3 gene is essential for the import of PTS1 proteins into the peroxisomal matrix. J. Biol. Chem. (1995) 270:17229-17236.
 
Tan, X., Titorenko, V.I., van der Klei, I.J., Sulter, G.J., Haima, P., Waterham, H.R., Evers, M., Harder, W., Veenhuis, M. and Cregg, J.M. Characterization of peroxisome-deficient mutants of Hansenula polymorpha. Curr. Genet. (1995) 28:248-257.
 
Szilard, R.K., Titorenko, V.I., Veenhuis, M. and Rachubinski, R.A. Pay32p of the yeast Yarrowia lipolytica is an intraperoxisomal component of the matrix protein translocation machinery. J. Cell Biol. (1995) 131:1453-1469.
 
Titorenko, V.I., Evers, M.E., van der Klei, I.J., Harder, W. and Veenhuis, M. Restoration of peroxisome formation in two conditional peroxisome-deficient mutants of Hansenulapolymorpha during growth of cells on specific organic nitrogen sources. Yeast (1995) 11:1139-1145.

 
1994
Evers, M.E., Titorenko, V.I., van der Klei, I.J., Harder, W. and Veenhuis, M. Assembly of alcohol oxidase in peroxisomes of the yeast Hansenula polymorpha requires the cofactor flavine adenine dinucleotide. Mol. Biol. Cell (1994) 5:829-837.
 
Waterham, H.R., Titorenko, V.I., Haima, P., Cregg, J.M., Harder, W. and Veenhuis, M. The Hansenula polymorpha PER1 gene is essential for peroxisome biogenesis and encodes a peroxisomal matrix protein with both carboxy- and amino-terminal targeting signals. J. Cell Biol. (1994) 127:737-749.

 
1993
Evers, M.E., Huhse, B., Titorenko, V.I., Kunau, W.H., Hartl, F.-U., Harder, W. and Veenhuis, M. Affinity purification of molecular chaperones of the yeast Hansenula polymorpha using immobilized denatured alcohol oxidase. FEBS Lett. (1993) 321:32-36.
 
Titorenko, V.I., Waterham, H.R., Cregg, J.M., Harder, W. and Veenhuis, M. Peroxisome biogenesis in the yeast Hansenula polymorpha is controlled by a complex set of interacting gene products. Proc. Natl. Acad. Sci. USA (1993) 90:7470-7474.
 
Waterham, H.R., Titorenko, V.I., Swaving, G.J., Harder, W. and Veenhuis, M. Peroxisomes in the methylotrophic yeast Hansenula polymorpha do not necessarily derive from pre-existing organelles. EMBO J. (1993) 12:4785-4794.

 
An electron micrograph from this article was a cover illustration on the December 1993 issue of the EMBO J.
 
1992
Titorenko, V.I., Waterham, H.R., Haima, P., Harder, W. and Veenhuis, M. Peroxisome biogenesis in Hansenula polymorpha: different mutations in genes, essential for peroxisome biogenesis, cause different peroxisomal mutant phenotypes. FEMS Microbiol. Lett. (1992) 95:143-148.
 
Veenhuis, M., van der Klei, I.J., Titorenko, V.I. and Harder, W. Hansenula polymorpha: an attractive model organism for molecular studies of peroxisome biogenesis and function. FEMS Microbiol. Lett. (1992) 100:393-404.
 
Waterham, H.R., Titorenko, V.I., van der Klei, I.J., Harder, W. and Veenhuis, M. Isolation and characterization of peroxisomal protein import (Pim-) mutants of Hansenula polymorpha. Yeast (1992) 8:961-972.

 
1991
Titorenko, V.I., Khodursky, A.B., Teslyar, G.E. and Sibirny, A.A. Identification of new genes involved in catabolite repression of alcohol oxidase and catalase synthesis in the methylotrophic yeast Pichia pinus. Genetika (1991) 27:625-635.
 
Titorenko, V.I., Khodursky, A.B. and Sibirny, A.A. Properties of new mutants of the methylotrophic yeast Pichia pinus impaired in catabolite repression. Genetika (1991) 27:791-800.
 
Sibirny, A.A., Titorenko, V.I., Teslyar, G.E., Petrushko, V.I. and Kucher, M.M. Methanol and ethanol utilization in methylotrophic yeast Pichia pinus wild-type and mutant strains. Arch. Microbiol. (1991) 156:455-462.

 
1990
Sibirny, A.A., Ubiyvovk, V.M., Gonchar, M.V., Titorenko, V.I., Voronovsky, A.Y., Kapultsevich, Y.G. and Bliznik, K.M. Reactions of direct formaldehyde oxidation to CO2 are non-essential for energy supply of yeast methylotrophic growth. Arch. Microbiol. (1990) 154:566-575.
 
Titorenko, V.I., Motruk, O.M., Efremov, B.D., Petrushko, V.I., Teslyar, G.E., Kulachkovsky, A.R., Sibirny, A.A. and Tolstorukov, I.I. Selection and properties of the mutants of methylotrophic yeast Pichia pinus defective in alcohol dehydrogenase and formaldehyde reductase. Genetika (1990) 26:1749-1759.
 
Gonchar, M.V., Titorenko, V.I., Gladarevskaya, N.N. and Sibirny, A.A. The phenomenon of the medium acidification by methylotrophic yeast cells and its biochemical nature. Biochemistry (Moscow) (1990) 55:2148-2158.
 
Kulachkovsky, A.R., Titorenko, V.I. and Sibirny, A.A. Electron microscopical investigation of the mutants of the methylotrophic yeast Pichia pinus impaired in different steps of ethanol metabolism. Tsitologiya i Genetika (1990) 24:17-20.
 
Sibirny, A.A. and Titorenko, V.I. Molecular mechanisms of catabolite regulation in yeasts. VINITI Press, Molecular Biology, Moscow, USSR, 214 pages (1990).

 
1989
Titorenko, V.I. and Sibirny, A.A. Carbon catabolite inactivation in yeast as an important way of regulation at the posttranslational level (Review). Biopolymeri i Kletka (1989) 5:23-36.
 
Tolstorukov, I.I., Efremov, B.D., Benevolensky, S.V., Titorenko, V.I. and Sibirny, A.A. Mutants of the methylotrophic yeast Pichia pinus defective in C2-metabolism. Yeast (1989) 5:179-186.
 
Titorenko, V.I. and Sibirny, A.A. Laboratory course of methods in yeast genetics. Lvov University Press, Lvov, USSR, 116 pages (1989).

 
1988
Sibirny, A.A., Titorenko, V.I., Gonchar, M.V., Ubiyvovk, V.M., Ksheminskaya, G.P. and Vitvitskaya, O.P. Genetic control of methanol utilization in yeasts. J. Basic Microbiol. (1988) 28:293-319.
 
Sibirny, A.A. and Titorenko, V.I. Inhibition of isocitrate lyase and malate synthase induction in Pichia pinus yeast by methanol. Biotekhnologiya (1988) 4:194-196.

 
1987
Sibirny, A.A., Titorenko, V.I., Efremov, B.D. and Tolstorukov, I.I. Multiplicity of mechanisms of carbon catabolite repression involved in the synthesis of alcohol oxidase in the methylotrophic yeast Pichia pinus. Yeast (1987) 3:233-241.
 
Sibirny, A.A., Titorenko, V.I. and Ubiyvovk, V.M. Differences in the regulation of biosynthesis of cytosolic superoxide dismutase and methanol oxidation enzymes in yeasts. Biochemistry (Moscow) (1987) 52:469-473.

 
1986
Sibirny, A.A. and Titorenko, V.I. A method of quantitative determination of alcohol oxidase and catalase in yeast colonies. Ukr. Biokhim. Zhurn. (1986) 58:65-68.
 
Sibirny, A.A., Titorenko, V.I., Benevolensky, S.V. and Tolstorukov, I.I. On regulation of methanol metabolism in the mutant of Pichia pinus yeast deficient in isocitrate lyase. Biochemistry (Moscow) (1986) 51:16-22.
 
Sibirny, A.A., Titorenko, V.I., Benevolensky, S.V. and Tolstorukov, I.I. On the differences in the mechanisms of ethanol- and glucose-induced catabolite repression in the yeast Pichia pinus. Genetika (1986) 22:584-592.
 
Titorenko, V.I., Mikityuk, R.G., Motruk, O.M. and Sibirny, A.A. Influence of different carbon sources on methanol metabolism in the methylotrophic yeast Pichia pinus. In: Physiology, Genetics and Biochemistry of Methylotrophic Microorganisms, Naukova Dumka Press, Kiev, USSR, pp. 29-33 (1986).
 

1983
Titorenko, V.I., Bykovskaya, S.V. and Trotsenko, Yu. A. Characterization of mutants and genetic control of methanol metabolism in Candida boidinii. Mikrobiologiya (1983) 52:307-311.
 
Titorenko, V.I. and Trotsenko, Yu. A. Selection of the branched-chain amino acid producing mutants in the methylotrophic yeast Hansenula polymorpha. Mikrobiologiya (1983) 52:979-985.

 
1982
Titorenko, V.I. Selection of mutants of the methylotrophic yeast Candida boidinii using an indicator media with phloxine. Mikrobiologiya (1982) 51:161-163.
Proudly powered by Weebly
  • Home
  • Current Lab Members
  • Past Lab Members
  • Research Projects
  • Publications
  • Invited Presentations
  • Media Impact
  • Students' Awards
  • Students' Talks at Meetings